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1. Summary

When Statistics Canada released X-11-ARIMA (Dagum 1980,

1988), the improvements to X-11 (Shiskin, Young, and M usgrave

1967) included  an automatic modeling procedure to help users take

advantage of new program features.  X-12-ARIM A (Findley,

Monsell, Bell, Otto, and Chen 1998), the most recent program in

the X-11 line, re ta ins the X-11-ARIMA automatic modeling

procedure, but X-12-ARIMA Version 0.3 includes an additional

automatic modeling procedure based on the procedure found in

TRAMO (Gómez and Maravall 1997).  At the U.S. Census Bureau,

we use automatic modeling tools to identify regARIMA models

(regression models with ARIMA errors) for forecast extension and

estimating regression effects before running the X-11 method of

seasonal adjustment.  We are concerned that the automatic

procedure may identify (1) mixed models that are generally too

complicated for concurrent adjustment production at the Census

Bureau or (2) models that are susceptible to convergence problems

as indicated by coefficient values.  We created a program to check

automatically-identified models for these concerns and produce

X-12-ARIMA input files using simplified versions of the

automatically-chosen models.  So far, our model-simplification

procedure is not completely automated, but we were able to choose

simplified models without excessive human intervention.

We compared adjustments using the automatically-identified

models, our simplified models, and the airline model, ARIMA

(0 1 1)(0 1 1) (Box, Jenkins, and Reinsel 1994).  We compared

models and the resulting adjustments using goodness-of-fit

diagnostics, spectrum of the model residuals, within-sample and

out-of-sample forecasts, and revision history diagnostics.

According to these diagnostics, results from simplified models were

comparable to results from the automatically-identified models.

2. Background and Motivation

Since the U.S. Census Bureau released X-11 (Shiskin et al. 1967),

there have been continual updates to the program such as

X-11-ARIMA and its further developments from Statistics Canada

(Dagum 1980, 1988) and X-12-ARIMA developed at the Census

Bureau (Findley et al. 1998).

One major improvement made available in X-11-ARIM A is the use

of forecast extension.  Treating regARIMA model forecasts like

real data so that X-12-ARIMA can apply symmetric X-11 filters at

the end of the series can reduce revisions of the seasonally adjusted

series.  Improving regARIMA model selection should improve the

forecast performance, lead ing to a better-quality seasonal

adjustment.

X-11-ARIMA includes an automatic modeling procedure that

chooses ARIMA models from a list.  In addition to that method,

X-12-ARIMA Version 0.3 includes a more flexible automatic

modeling procedure based on the method found in TRAMO

(Gómez and Maravall 1997).

X-12-ARIMA can determine various regARIM A options with

several automatic procedures:

• Choice of series transformation (log function or no

transformation),

• Determination of ARIMA model (checking for orders of

differencing and significance of ARM A coefficients), and

• Selection of regression effects such as trend constant, trading-

day, Easter, and outlier effects.

Details of the procedures can be found in Monsell (2002).

Ongoing research at the Census Bureau (Hood and Findley 1999,

Farooque, Findley, and Hood 2001) has compared the results of the

automatic modeling procedures of X-11-ARIMA, X-12-ARIMA

Version 0.3, and TRAM O using model-fit diagnostics (Ljung-Box

Q and AICC when appropriate), number of outliers (too many

outliers may indicate problems with a model), and residual effects

as shown by peaks at seasonal and trading-day frequencies in the

spectrum of the model residuals.  See Soukup and Findley (1999)

for a description of the spectrum diagnostic.

The research also showed that some automatically-chosen models

from previous builds of X-12-ARIMA Version 0.3 were

misspecified, mostly due to unit roots, meaning that the sum of the

AR coefficients or the sum of the MA coefficients was almost one

in absolute value .  AR coefficients that sum to almost one indicate

possible underdifferencing.  MA coefficients that sum to almost

one indicate  possible  overdifferencing.  For example, an ARIMA

(1 0 1) model with an AR coefficient of 1.0 would be better

specified as an ARIMA (0 1 1) model.

The new automatic modeling procedure now includes a final unit

root test (U.S. Census Bureau 2004), and AR-model unit roots are

not likely to occur.  More often, unit-root concerns involve

seasonal M A models.

The current test for nonseasonal MA coefficients allows

coefficients to be very close to one (up to 0.999).  SEATS has a

lower limit, fixing MA coefficients at 0.98 for estimates over 0.98.



These limits seem high given the variability of coefficient values

from month to month.  We chose a cutoff of 0.96 for all coefficient

types.

In addition, we are concerned about the automatic choice of mixed

models – models with nonseasonal AR and MA terms or seasonal

AR and MA terms.  It is possible for AR terms and M A terms to

cancel each other's effects, so often we can replace mixed models

by more simple models.

Cancellation between AR and M A terms occurs with terms that are

in the same model component.  A model with AR and M A terms in

separate components is not a mixed model.  For example, the

model (2 1 2)(0 1 1) is mixed because the nonseasonal component

has AR and MA terms.  The model (2 1 0)(0 1 1) is not a mixed

model because the nonseasonal AR terms will not cancel the effect

of the seasonal MA term.

Some background research reinforced the idea that automatic

modeling results may be misleading.  After simulating 500 airline-

model series, we ran the automatic modeling procedure for four

subspans of each original series.  The automatic procedure chose

the airline model for all four data spans for only 35%  of the series.

For 5% of the series, the automatic procedure did not choose a

seasonal difference for at least one of the spans.

The Census Bureau is committed to having an automatic modeling

procedure that is simple enough for inexperienced modelers to use

yet flexible enough for more sophisticated users.  In addition, the

procedure must select appropriate models for users of all levels.

For production seasonal adjustment at the Census Bureau, we

specify the regARIMA model, but we reestimate model coefficients

as we add data points.  The models must converge each month or

quarter with no changes to the model settings and no interventions

from analysts.  Rules of thumb for model selection help keep the

models simple and likely to converge.

We often choose simple models to fit well-behaved series.  It may

be even more important to use simple models for poorly-behaved

series, yet those are the series that automatic procedures tend to fit

with complex models.

In this context, a simple model is one that is not mixed and has no

unit root problems.  We describe these as production-ready models

because they fit our criteria for production use.

Note that production-ready status as described here is based on

seasonal adjustment circumstances at the U.S. Census Bureau.

Other situations, including research applications, expert analysis,

and model-based  adjustments, may have different model-

acceptance criteria.

Despite our persistent recommendations for production-ready

models, some users are reluctant to change the model that

X-12-ARIMA selects.  A procedure that performs checks and

automatically chooses a new model that fits the criteria will help

users who are  not confident with their own modeling skills.

Certainly it would be ideal to  have experts choose the regARIMA

models we use for production work, using all available diagnostics

and having full knowledge of each series, but for novices and even

for experienced modelers who are short on time and information,

automatic modeling procedures are going to continue to be the

main source of models used for production work.

We believe the new automatic modeling procedure saves time

because it produces generally better models than the previous

procedure, and we spend less time testing other models.  But when

the new procedure selects models that are not production ready, we

have to remodel the series.

We compared results of complex models chosen by the automatic

modeling procedure to results from using the airline model and

simplified models.  If the automatically-chosen ARIMA models had

no seasonal component, instead of using the true airline model, we

used the nonseasonal counterpart, ARIMA (0 1 1).  In addition,

these models were subject to our unit root checks, so some initial

airline models ended up as AR models.  However, for sake of

simplicity, we continued to refer to this group of models as airline

models.

3. Methods

W e started with 872 U.S. Census Bureau economic data series,

most of which are seasonally adjusted (or adjusted for trading-day

effects) on a monthly or quarterly basis.  They included data for

U.S. imports and exports, construction, manufacturing, retail sales,

food stamp participation, and components of quarterly net income

after taxes.  There were 672 flow series (values that accumulate

over time), 17 of which were quarterly series.  The remaining 200

series were stock (inventory values measured at a given point in

time) series or constructed in such a way as to behave like stock

series with regard to trading-day effects.  They were  a mix of well-

behaved and poorly-behaved series, including some series that were

not likely to  be fit by any model.

We used X-12-ARIMA version 0.3 (build 138 , compiled April 26,

2004) for model identification and estimation.

Table 1 shows a typical input specification file for our automatic

model identification.  The example input specification file is for a

monthly flow series.  For stock series we tested for stock trading-

day effects, and for quarterly series we set period = 4.  For 17 series

that require prior ratio adjustments, we specified the log

transformation instead of using the X-12-ARIMA automatic choice.

This input specification file has X-12-ARIMA perform several

automatic adjustment choices:

• Transformation choice (logarithmic or no transformation)

• ARIMA model choice

• Maximum nonseasonal difference:  two

• Maximum seasonal difference:  one

• Maximum nonseasonal order:  three

• Maximum seasonal order:  one

• No preference for balanced models



• Regression choices

• Trend constant

• Trading-day effect

• Easter effect (test for Easter effect lasting one, eight, or 15

days)

• Outliers (default critical value)

• Additive outliers (point outliers)

• Level shifts

• Temporary changes

Table 1. Initial Input Specification File
series{
  title = 'X0013'
  period = 12
  file = 'X0013.dat'
  format = 'datevalue'
}
transform{ function = auto }
automdl{
  maxdiff = (2,1)
  maxorder = (3,1)
  balanced = no
}
regression{ aictest=( td  Easter ) }
check{print=all}
outlier{types=( all )}
x11 { }

We used X-12-W rite, a SAS® program that writes and ed its

X-12-ARIMA input files to create our specification files (Hood

2003).  The program runs X-12-ARIMA with automatic options as

chosen by the user and creates input specification files specifying

the results.  Users familiar with X-12-Write may notice that we

changed the usual automatic modeling settings for this project.

From the results of X-12-Write, we identified 287 series with

models that were not production-ready.  Six of those series had no

apparent seasonal, trading-day, or Easter effects through any of the

X-12-ARIMA runs, so we confined our review to the remaining

281 series.

We are accustomed to seeing models that are not production ready.

W hen changing them manually, we can work back and forth with

different regression or ARIMA configurations to choose what is

best.  However, an automated procedure must be systematic with

little backward checking if it is to be fast enough to be useful.

Because changing the model affects the coefficients, we

approached coeff icient-related changes in steps, not

simultaneously:

Step 1. Change mixed models to nonmixed  models

Step 2. Change models with problematic coefficients

Our approach to Step 2 was straight-forward.  We already had

guidelines that we could program fairly closely into X-12-Write.

Step 1 was not as simple.  We used a system of related models,

testing each new combination.  We chose model test patterns

largely based on experience.  Our approach essentially is a hybrid

of the procedures found in  TRAMO and X-11-ARIMA.

Our approach to the d ifferent mixed model patterns is shown in

Table 2 (d represents the order of differencing).  For models with

mixed seasonal components, either (1 0 1)s or (1 1 1)s, we

substituted (0 1 1)s.  For models with mixed nonseasonal

components, we had  up to three test ARIMA models.

Table 2. Substitutions for Nonseasonal Mixed Model Patterns

Mixed Patterns Substitution Test Patterns

(3 d 3)

(3 d 2)

(2 d 3)

(0 d 3)

(3 d 0)

(3 d 1)

(0 d 3)

(3 d 0)

(2 d 0)

(2 d 2)

(0 d 2)

(2 d 0)

(0 d 0)

(2 d 1)
(0 d 2)

(2 d 0)

(1 d 3) (0 d 3)

(1 d 2) (0 d 2)

(1 d 1)

(0 d 1)

(1 d 0)

(0 d 0)

Table 3. Second Input Specification File
series{
  title = "X0013_2"
  file = 'X0013.dat'
  format = "datevalue"
}
transform{function = log}
arima{ model = (2 2 0)(0 1 1) }
# Auto Choice was (2 2 2)(0 1 1)
regression{ AICtest = ( td  Easter ) }
outlier{ types=( all ) }
check{ print=all }
forecast{ print=none maxlead=30 }
x11{ seasonalma = s3x3 }

We ran X-12-ARIM A again, specifying the test models.  For

comparison purposes, during this step we also created an input file

specifying the automatically-identified model.  From the results of

the automatic identification run, we specified transformation

choice, trend constant, the X-11 seasonal moving average, and the

number of forecasts.  We forecasted half the length of the X-11

seasonal filter (60 months for monthly series with 3x9 filters).  We

retested for other regression effects because the results, especially

outlier results, could be different for different ARIM A models.

Table 3 shows an input specification file for this step.

After rerunning X-12-ARIM A and estimating the models for all

series, we checked the test model coefficient values for unit root



problems according to the criteria shown in Table 4.  W e use the

following notation:  (p d q)(P D Q) is the initial ARIMA model, Ni

is the ith nonseasonal AR coefficient of the initial model, 2i is the

ith  nonseasonal MA coefficient, Ms is the first (only) seasonal AR

coefficient, and 1s is the first (only) seasonal MA coefficient, and

sexn
 is the estimated standard error of the model parameter xn.  All

coefficients that were within 0.04 of 1.0 were less than 1.96

standard errors from 1.0.

Table 4. Changes for Problematic Coefficients

Coefficient Value Model Change

Nonseasonal Models

|N1 – 1| < 0.04 and

|N1 – 1| < 1.96 seN1
or

Ni > 0.96

If d = 0 then ({p – 1} 1 0)

If d > 0 (0 d 3)

|21 – 1| < 0.04 and

|21 – 1| < 1.96 se21
or

2i > 0.96

(1 {d – 1} 0)

(plus constant for d – 1 = 0)

(no substitution for d = 0)

Seasonal Models

|Ms – 1| < 0.04 and

|Ms – 1| < 1.96 seMs

(0 1 1)s

|1s – 1| < 0.04 and

|1s – 1| < 1.96 se1s

If D = 1 then use seasonal

dummy regressors

(no substitution for D = 0)

For the nonseasonal components, if there was an apparent AR unit

root problem,  but there was already some order of differencing, we

changed to an MA model of the highest order that we were

allowing (three).

We considered substituting (1 0 0)s + seasonal dummy regressors

in place of (0 1 1)s where 1s was close to one.  For some early test

runs (with all regressors specified), we checked the significance of

Ms.  We made this substitution for 149 series:  21.5% (32) had at

least one test run for which Ms was significant (more than 1.96 seMs
from zero).  Five of those 32 series also had test runs for which it

was not significant.  (Each series had multiple test runs with

different ARIM A models but these counts include only the models

with this substitution.)

We also looked at Ljung-Box Q results using the pass/fail criteria

we describe below.  Including the seasonal AR made a difference

for only 16.1% (24) of the series.  For 58.3% (14) of those, models

with (1 0 0)s and seasonal dummies had satisfactory Ljung-Box Q

criteria, and models with only seasonal dummies failed.  (The

estimated Ms was significant for half (7) of those series.)  For the

other 41.7% (10), the situation was reversed, and the model passed

only without the seasonal AR.  (Only two of those 10 series had

significant Ms.)

We used seasonal dummies with no seasonal ARMA parameters for

our substitutions.  But we decided that the program should allow

users to choose whether or not to use (1 0 0)s with the seasonal

dummies.

From the results of the substitution runs, we specified all chosen

regressors, specifying up to 20 outliers – if the program selected

more than 20 outliers, we did not specify any outliers.  We used

automatic outlier identification again for all series for our final run,

but we set the critical value to 5.5, much higher than for the

previous runs.  Our previous runs used the default critical value

which is derived based on the length of the model span.  Table 5

shows an example of a final input specification file with model

information specified.

Table 5. Final Test Input Specification File
series{
  title = "X0013_2_F"
  savelog = peaks
  file = 'X0013.dat'
  format = "datevalue"
}
transform{ function = log }
arima{ model = (2 2 0)(0 1 1) }
regression{
  variables = ( AO2001.Jul AO2001.Oct )
}
outlier{ critical=5.5 types=( all ) }
check{ print=all }
forecast{ print=none maxlead=30 }
x11{ seasonalma = s3x3 }
history{
  estimates = (fcst sadj sadjchng)
  start = 1999.Jan
}

Once we had completed all the substitutions and had run the series

with the options specified, we compared models and adjustments

using standard diagnostics.  We used Ljung-Box Q and the

spectrum of the model residuals as qualifying diagnostics.  M odels

that passed our criteria for these were automatically considered

better than models that may have had smaller forecast errors or

revisions but d id not pass the criteria for the first two diagnostics.

In addition, we relied on out-of-sample forecast error graphs only

for models that were not distinguished using diagnostics 1–4.

 1. Ljung-Box Q, goodness-of-fit diagnostics related to the

autocorrelation function (Ljung and Box 1978).  Models

failed if

a. Lag s Q diagnostic failed, or

b. More than s lags failed from lag 1 to 2s, or

c. More than s/2 lags failed from lag 1 to s;

 2. Spectrum of the model residuals, a diagnostic of residual

seasonal and trading-day effects:  models failed if there was a

visually significant peak at seasonal frequency 1/s (Soukup and

Findley 1999);



 3. Average absolute percent error of within-sample forecasts for

the last three years of the series, preferring smaller values;

 4. Average absolute revisions of the seasonally adjusted series

(percentages for multiplicative decompositions), preferring

smaller values.

 5. Out-of-sample forecast error graphs, preferring the model with

generally smaller errors.

We chose not to use likelihood statistics because we did not want

diagnostics that we could use for some series and not for others.

We often compared models with different orders of differencing

and different outlier sets.

We preferred diagnostics that we could incorporate into our

program, but we included out-of-sample forecast performance

because it is one of the best availab le model diagnostic tools.  This

diagnostic consists of a plot of the differences of the accumulating

sums of the squared forecast errors of two regARIMA models.  We

usually plot both the 1-step-ahead and s-step-ahead differences.  If

the differences have a predominantly upward tendency, then the

first model has generally larger forecast errors, so we prefer the

second model.  A predominantly downward tendency indicates a

preference for the first model.  See Findley et al. (1998) for more

information about out-of-sample forecast error graphs.

When modeling a series manually, we would not necessarily use

these diagnostics exactly in the way we set them up  for this

program.  For instance, a modeler would likely use autocorrelation

and partial autocorrelation function results.  But programming a

check for those results was too complicated, so we relied on Ljung-

Box Q diagnostics.

4. Example, Construction Expenditures Series

An example may clarify the methods we used.  For one of the

construction expenditure series, X-12-ARIMA chose (2 2 2)(0 1 1)

and some outliers for the model.  We ran three test runs, testing

again each time for regressors:

Model 1. (0 1 1)(0 1 1),

Model 2. (0 2 2)(0 1 1),

Model 3. (2 2 0)(0 1 1), and

Model 4. (0 2 0)(0 1 1).

We also ran X-12-ARIMA with the automatically-chosen model

specified.

There were no coefficient problems with the resulting estimates, so

we compared the results.

All four of our test models fail the Ljung-Box Q criteria, but each

passes our criterion for the spectrum of the model residuals, so we

compare average absolute within-sample forecast error and average

absolute percent revision.

As shown in Table 6, of all the test runs, Model 1, the airline

model, results in the minimum forecast error and the minimum

revision, so Model 1 is our choice among the test models.

Table 6. Comparison of Diagnostics A mong M odels

Test Models Forecast Error Revision

1.  (0 1 1)(0 1 1) 7.35% 1.465%

2.  (0 2 2)(0 1 1) 10.88% 1.942%

3.  (2 2 0)(0 1 1) 9.79% 1.965%

4.  (0 2 0)(0 1 1) 8.00% 2.212%

Automatic Model

(2 2 2)(0 1 1) 12.12% —

We then compare our best test run to the run with the

automatically-identified model.  The automatically-identified model

also failed the Ljung-Box Q criteria but passed the spectrum of

model residuals criterion, so we can compare within-sample

forecast and revision diagnostics.

Our test run using the airline model has the better within-sample

forecast error performance.  We cannot compare the revision

performance because during the history analysis, the automatically-

identified model did not always converge.  The history analysis

directly imitates production by adding one point at a time, each

time reestimating the model.  When history estimation fails to

converge, we are especially reluctant to use the model for

production.

We prefer Model 1 over the automatically-identified model based

on these diagnostics, so we do not consider the out-of-sample

forecast performance.

5. Results

Of the 872 series, X-12-ARIMA fit 57.5% (501 series) with

production-ready models.  Another 9.6% (84) resulted  in no model,

possibly because of convergence problems.  This result does not

necessarily reflect badly on X-12-ARIMA.  Some of the series that

we tried to model were so poorly-behaved that we would never try

to adjust them.  We included all series within our data groups with

no attempt to avoid bad series.  It turned out that 0.7% (six) of the

series had no seasonal, trading-day, or Easter effects in any run, so

we excluded them from further tabulations because we would not

adjust them in any way.

The remaining 32 .2% (281) of the automatically-chosen models

were not production-ready:  18.5% (161) were mixed  models, and

13.8% (120) were not mixed but had apparent unit-root problems

according to our coefficient tests.  (Percentages do not add because

of rounding.)

Table 7 shows the most frequent nonseasonal mixed-model

patterns.  The most frequent actual choices were (1 1 1) (30.4%)

and (3 1 1) (21.6% ).



Table 7.  Nonseasonal Mixed-Model Patterns

Pattern Frequency Number of Series

(1 d 1) 39.2% 49

(3 d 1) 23.2% 29

(2 d 1) 13.6% 17

Other 24.0% 30

Total 100.0% 125

There were 47 series with mixed seasonal components:  68.1% (32)

with (1 0 1)s and 31.9% (15) with (1 1 1)s.

Only 6.8% (11) of the mixed models had mixed nonseasonal and

seasonal model components.  They are included  in the counts

shown above.  The most frequent doubly-mixed model patterns

were (1 d 1)(1 D 1) and (3 d 1)(1 D 1), each chosen for 36.4%

(four) of the 11 series.

For the nonmixed models with apparent unit root problems and for

3.7% (six) of the mixed models, we simply made our replacements,

so there was just one test model.  (These mixed models were all of

the form (0 1 1)(1 d 1) so that the only test model was the airline

model.)

Of the 155 remaining series with model comparisons, 63.9% (99)

had an obviously preferred model.  These models either (1) passed

the Ljung-Box Q and model-residual spectrum diagnostics and the

other test models for the series did not (or passed one when all

other test models passed neither), or (2) when compared to the

other models that passed the qualifying diagnostics (to the greatest

degree) had runs that resulted in both the minimum within-sample

forecast error and minimum revision.  This second situation was the

case for our example series of Section 5.

The remaining 36.1% (56) had no test model preference.  We

created out-of-sample forecast error graphs to compare the models

with the highest passing percentage of the qualifying diagnostics.

Obviously, this diagnostic check cannot be automated because it

requires a choice made according to visual clues.  We can automate

the creation of the graphs, however, or if we want to eliminate any

steps that are not automatic, we must find another way to choose

models when the choice is not obvious.

Out-of-sample forecast error graphs helped us choose models for

an additional 20% (31) of the 155 series.  We were  left with 16.1%

(25) that still needed a model choice .  We decided to use the

(possibly modified) airline models for these series.

Next we compared results of the 281 chosen rep lacement models

to the results using the automatically-chosen models.  In practice,

we would prefer the replacement models over the automatically-

chosen models merely to avoid using mixed  models or models with

possible unit roots in a production setting, but we wanted to  see if

our changes involved diagnostic penalties.

Again, we used Ljung-Box Q and model residual criteria to

compare results.  Of the 281 model comparisons, 17.8% (50) had

better results using the automatically-chosen model.  Of those 50

comparisons, 90.0% (45) favored the automatically-chosen model

because it passed the Ljung-Box Q criteria, and the replacement

model did not.  This result is not surprising:  82% (37) of those 45

models were mixed, and it is reasonable that the more

parameterized mixed  models would have better goodness-of-fit

diagnostics.  The qualifying criteria favored the replacement model

for 6.4% (18) of the 281 series.

We compared within-sample forecast error and revision of the

seasonally adjusted series for the remaining 213 series:  22.1% (47)

of the comparisons showed that the automatic model choice was

better for both diagnostics, and 38.5% (82) of the comparisons

favored the replacement model.

But how different were the diagnostics we compared?  To answer

this question, we looked at some simple descriptive statistics of the

differences for the 213 series.  We constructed the d ifferences so

that a positive value indicated a preference for the replacement

model.  Keep in mind that the forecast error diagnostic is the

average absolute percent error, and the revision diagnostic is either

the average absolute percent difference (for series with

multiplicative decompositions) or the average absolute difference

(for series with additive decompositions).

Table 8. Descriptive Statistics for the Differences of Average

Absolute Percent Within-Sample Forecast Error

Extreme Values

Mean Median Negative Positive

1.91

t =2.19

0.22 – 16 .6

– 9.9

– 9.2

162 .2

63.4

44.1

Table 8 shows these statistics for the forecast errors and Figure 1

shows a scatter plot of the values.  The correlation coefficient was

0.967.  We removed the extreme pair (434.8,272.6) from the plot.

We can see from Table 8 that the mean, with a t value of 2.19, is

significantly different from zero, so the replacement models had

better within-sample forecast error on average.

When comparing the revisions, we saw convergence problems.  For

1.9% (four) of the 213 series, the revision diagnostic was not

availab le for either the automatic model run or for the replacement

model run.  For an additional 2.3% (five) of the series, it was not

available for the automatic model run but was available for the

replacement model run.  Certainly for those five series, we prefer

the replacement model.

For the remaining 204 series, we separated comparisons by type of

decomposition so that we did not compare percentages to values

from the original series level.  Table 9 shows descriptive statistics

for the revision values.  Apart from one additive decomposition, the

revision values were not especially different.  The t values show

that the means are not significantly different from zero.



Figure 1.  Scatter Plot of the Average Absolute Within-Sample

Forecast Error of the Automatic Model Choices and the

Replacement Models With Reference Line at Y=X

Table 9. Descriptive Statistics for the Differences of Average

Absolute Revision of the Seasonally Adjusted Series

Extreme Values

Mean Median Negative Positive

Multiplicative Decomposition

– 0.02

t = – 0.65

0.00 – 2.35

– 0.71

– 0.68

1.66

0.55

0.34

Additive Decomposition

0.92

t = 1.04

0.02 – 0.37

– 0.14

– 0.12

69.92

0.54

0.28

Figure 2.  Scatter Plot of the Average Absolute Revision of the

Seasonally Adjusted Series Using the Automatic Model Choices

and the Replacement M odels (Additive Decompositions) With

Reference Line at Y=X

Figure 2 shows a scatter plot of revisions for the 79  series with

additive decompositions.  We eliminated the extreme pairs

(20.455,19.912) and (129 .404 ,59.487) from the plot.  The

correlation coefficient was 0.984.

Figure 3.  Scatter Plot of the Average Absolute Percent

Revision of the Seasonally Adjusted Series Using the Automatic

Model Choices and the Replacement M odels (Multiplicative

Decompositions) With Reference Line at Y=X

Figure 3 shows a scatter plot of revisions for the 125 series with

multiplicative decompositions.  The correlation coefficient was

0.986.  The overall correlation coefficient for the 204 comparison

series was 0.970.

6. Conclusion

We concluded that this automatic model-simplification procedure

can help us quickly choose production-ready models whose results

compare favorably to results from the automatically-identified

models.  To fully automate the current procedure, we need to make

slight changes.  W e anticipate that staff at the Census B ureau will

be able to use this program.

On the other hand, a new X-12-ARIMA automatic-modeling option

is available:  setting mixed = no will prevent the procedure from

considering mixed models.  We are investigating the new option,

but meanwhile, we have continued developing the model-

simplification program.  Our program results are subject to

comparisons to results from this new option.

7. Future Study

If our methodology proves valuable even in light of new options of

X-12-ARIMA, we would like to further our work with model

simplification.  Some important issues that remain include checking

replacement models for coefficient significance and testing the final

model for unit root problems.  Also we would like to simulate

complicated ARIMA processes to check our results for cases in

which we know the true underlying model.

Also we would like to  improve the efficiency of the simplification

program to reduce the time to run and  compare series.

We received a suggestion (B. Monsell, personal communication,

September 8, 2004) that different automatic modeling options could



reduce the number of mixed models that the program identifies.

We would like to investigate the suggestion further.

Finally, we have many series that we modeled with the possibly-

modified airline model.  We chose these models for 15.7% (44) of

the series based on the diagnostic results and applied them for an

additional 8.9% (25) of the series for which the diagnostics did not

lead to a particular model.  In addition, we would like to look at the

results more closely to see how the results from the airline model

differ from the results of our other replacement models.
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